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A Practical Minicourse in Dynamic Light Scattering *1 
 

 

                                                 
1
 This is an attempt at a 5E approach: Engage, explore, explain, extend, evaluate: 

http://enhancinged.wgbh.org/research/eeeee.html Probably a few e’s are missing or weak, but major sections are 

marked with an E. Who can see the flaw in this ‘constructivist’ educational approach? 

 

 

Note:  this document borrows from an older one on DLS, which is still on the HowTo website 
(http://macro.lsu.edu/howto) for historical purposes. Details of an old-style correlator, based on 
shift register and add command generator technology, are now relegated to the final appendix. 
The present document is also recast as a minicourse with a “tour guide”—e.g., recently trained 
student to lead it. Eventually, we may present it as a YouTube video.  

Learning objectives: 

 Explain why/when use DLS. 

 Place photon correlation in context of other DLS experiments. 

 Understand origin and behavior of speckle pattern. 

 Write a formal expression for correlation function from memory. 

 Write a practical expression for correlation function for homodyne DLS. 

 Be able to estimate decay time from various plot representations of correlation 

functions.  

 Analyze a DLS correlation function using a cumulants approach to estimate particle 

size (Excel or other computational aid OK).  

 Prove the first cumulant is the weighted average of the decay times for a multi-

exponential correlation function. 

 Understand noise on correlation functions, at least at a rudimentary level. 

 Execute an Excel Solver fit for a DLS correlogram. 

 Understand error propagation in DLS.  

 In a bimodal mixture of differently sized but otherwise similar particles (example: 

latex spheres) estimate the relative amounts of those particles by mass and by number.  

 Know when to apply inverse Laplace transform algorithms such as CONTIN. 

 Understand ILT algorithms, at least the more transparent ones such as exponential 

sampling.  

http://enhancinged.wgbh.org/research/eeeee.html
http://macro.lsu.edu/howto
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Part I. Guided Tour 
Orientation 

 

The reader is assumed to possess a working knowledge of particle and/or polymer properties. 

Terms like ‘virial coefficient’, ‘osmotic compressibility’, ‘Zimm plot’, and ‘radius of gyration’ 

should be understood prior to attempting this minicourse. Readers lacking this kind of 

background material may still be able to benefit from the minicourse, but should be especially 

careful not to form strong impressions that will be difficult to erase when and if their study of 

polymer/particle science improves. For such readers, this document may be more about forming 

questions than answers.  
 
Why and when do we use DLS: making connections to other experiments you 
may already know.E 
 

DLS is used across the spectrum of polymer and particle science: synthetic and preparative 

chemists may apply it for routine characterization; polymer analytical chemists try to improve 

DLS and need it as a benchmark for other alternatives; experimental physicists and physical 

chemists use it to study complex fluids such as gels, transient networks and even liquid crystals; 

theorists publish dynamic structure factors on systems such as concentrated dispersions 

undergoing hydrodynamic interaction; and, even pure academics use it as a touchstone to optical 

design, the nature of time correlation functions, and computer programming. Without question, 

though, the main application is obtaining highly precise size information. We shall see that high 

precision does not guarantee ease of interpretation, but that does not diminish the nobility of 

making a good attempt at particle sizing. Even students ultimately intending other applications 

will benefit from an understanding of polymer and particle sizing by DLS.  

 

Alternatives for size determination include static light scattering (SLS), small-angle X-ray or 

neutron scattering (SAXS and SANS respectively), analytical ultracentrifugation (AUC), and 

various forms of microscopy. Newer alternatives are fluorescence photobleaching recovery (FPR, 

also known as fluorescence recovery after photobleaching or FRAP), fluorescence correlation 

spectroscopy (FCS), forced Rayleigh scattering (FRS), pulsed field gradient NMR (PFGNMR) or 

the related diffusion ordered spectroscopy (DOSY), particle tracking (PT), and differential 

dynamic light scattering (DDLS). Despite the name, this last alternative is really a form of 

microscopy. Finally, certain new variants of DLS could be considered alternatives for particle 

sizing; these include DWS (diffusing wave spectroscopy), two-color cross-correlation DLS, 

depolarized DLS, zero-angle depolarized DLS, and gated cross-correlation DLS. Some 

characteristics of these methods appear in Table 1.  
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Table 1. Particle Sizing Methods 

Method Basis Range.Å Extrapolations Requirements Precision 

SLS Angle 

dependence of 

scattered light. 

>50 Almost always No dust 1% ???  

DLS Time or 

frequency 

dependence of 

scattered light 

5 - 20000 Depends Even less 

dust 

1%  

SAXS Same as SLS, 

shorter 

wavelengths 

>5?    

USAXS Same as SAXS, 

even lower 

angles 

<50000?    

SANS Same as SAXS, 

neutrons instead 

of light 

>5?    

PFGNMR Spin echo 

amplitude 

reduction 

<1000?    

PT Microscope 

observation 

>300?    

LD Similar to SLS >10000    

FPR Optical tracer 

self diffusion 

5 to >10000    

FCS Optical tracer 

self diffusion 

Similar to 

FPR? 

   

AUC Sedimenting 

particles 

Depends on 

density 

   

 

An important characteristic of DLS is its ability to measure particles as they exist in solution. 

Like any light scattering method, DLS is highly sensitive to aggregation. This is good if you want 

to know about aggregation, but many users have been disappointed to find that the highly precise, 

monodisperse 200-nm particles they see inside on a transmission electron microscopy (TEM) 

grid are dispersed as cruddy accretions in suspension! Without DLS, one might falsely hope the 

accretions form during sample preparation for TEM. Sometimes, it goes the other /way: DLS 

confirms the desired particles are dispersed and the accretions did form during TEM sample 

preparation. An attribute of DLS is speed; if the sample is easily cleaned of dust, an approximate 

size can be obtained in just a few minutes or even less; however, SLS can be even faster, as and 

so can SAXS if a powerful synchrotron source is readily available. Still another important DLS 

characteristic is low cost and wide availability; this feature is certainly not shared by SAXS (and 

even less by SANS). Pulsed Field Gradient NMR (PFGNMR) is also closely related to Diffusion 

Ordered Spectroscopy (DOSY). In these diffusion-based sizing methods, the particles are 

“tagged” by alignment of their nuclear spins in an NMR spectrometer; although the tag only lasts 
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a short time, the particles can be observed observed as they move in a magnetic field gradient. 

Like DLS/SLS, no chemical tag needs be applied. Multicomponent diffusion can sometimes be 

sorted out, and the principle difficulty of the method is sizing of very large, slow diffusers. 

Particle tracking methods  have the opposite limitation. PT follows diffusers by taking (possibly 

blurry) images of the particles; even species smaller the size resolution limit of optical 

microscopy can be followed. These methods are extremely promising. Analytical 

Ultracentrifugation (AUC) is a classic method that has seen a strong resurgence in the past two 

decades. The friction coefficient of particles is obtained as a combination of their sedimentation 

and diffusion when the particles sink in a high centrifugal field.  

Two fluorescence methods deserve mention, even if they do require (usually) the attachment 

of a dye to render the particles visible. These are Fluorescence Photobleaching Recovery (FPR) 

and Fluorescence Correlation Spectroscopy (FCS). In an FPR measurement, a region of a sample 

has its fluorescence permanently erased, ideally without causing damage to the diffusers; the 

return of still-fluorescent particles to the region yields the diffusion coefficient. In FCS, the 

fluorescent intensity from a small volume of an extremely dilute solution of fluorescent diffusers 

is monitored. As the number of fluorescent particles in the viewing volume rises and falls, so 

does the intensity; autocorrelating that signal yields a diffusion coefficient if the volume, shape 

and illumination profile are known.  A common misconception about DLS is that it also relies on 

variation of the number of scatterers in the viewing volume…ideally, this should NOT be the 

case.  

To summarize this section, you should use DLS if an easily de-dusted particle or polymer 

scatters light but is too small for SLS, too soft for TEM or even Cryo-TEM, and not worth the 

effort of SAXS or SANS. Even then, it might make sense to consider FPR or FCS if the particle 

is easily labeled, without much potential to be damaged by the label, and if it is to be studied at 

very low concentrations. PT, PFGNMR, DOSY and AUC might be chosen if the scattering signal 

is hopelessly weak (low differential refractive index increment, dn/dc). Often, it makes sense to 

use DLS in addition to other methods; in particular, knowing the shape of the particles (e.g., from 

TEM) helps. Then use DLS to improve the statistics through the high number of particles it 

naturally observes.  
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A walking tour of a highly visual DLS apparatus.E 
 

DLS takes a variety of forms. There are, for example, heterodyne measurement systems in 

which a little of the laser light is added deliberately to the scattered signal (Figure 1). This 

method, rarely used, is very powerful for complex systems where one cannot be certain that the 

Siegert relation (see below) is not guaranteed to hold.   

 

 

 

 

 

 

 

 

Figure 1. Heterodyne DLS apparatus. BS = beamsplitter; M = Mirror; D = detector. For a 

homodyne apparatus, just remove the two beamsplitters and mirror.  

 

Detection can be by photomultiplier tube (PMT) or single photon avalanche photodiode detector 

(SPAD). These light collectors may feed autocorrelators, cross-correlators, structurators, spectral 

analyzers, Fabry-Perot interferometers or even just a computer card equipped for A/D conversion 

or photon counting.(Shoemaker PChem Lab Text) The most common way to do the 

measurement is a ‘homodyne’ arrangement of just the scattered light (no added light directly 

from the beam) combined with photon correlation spectroscopy (PCS). This section walks the 

student through observations that can be made on a high-quality instrument that uses a homodyne 

PCS detector mounted on a rotating arm to define the scattering angle. The light reaches that 

detector through a classical lens/aperture/pinhole arrangement, as shown in Figure 2. Much of 

what is learned here applies to other homodyne optical schemes, the main competitor being 

single-mode or nearly single-mode fiber optic detectors;XXXRicka despite some  

 

 

 

 

 

 

 (a)     (b) 
 

Figure 2. Classical lens-aperture-pinhole setup for DLS detection (a); and, photograph of 

the instrument (b).   

 

interesting and useful characteristics, those systems do not readily provide for a visual approach 

to learning DLS. 

 
 

 Safety: You will have a “tour guide” for these initial observations. Do not attempt them 

without help, as permanent eye damage may result. Your tour guide will explain: 

Laser 

BS 

BS M 

D 

Sample 

Lens Pinhole 

Aperture 

Ocular 
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1. How to avoid directly looking into the beam. 

2. How to avoid exposure to reflected light. 

3. How to use the instrument’s viewer (ocular) safely. 

4. How to prevent damage to the DLS detector (this is a safety issue because then the 

laboratory personnel will kill you).  

 Speckle pattern for latex scatterers 
1. The photomultiplier (or other) detectors will be turned off.  

2. Your tour guide will explain how not to go blind. 

3. Your tour guide will explain the care and feeding of the instrument: 

 No ink on cells (requires extensive cleaning). 

 Cells must be dry before inserted (requires extensive cleaning). 

 Do not go lower than a scattering angle of 5 degrees without turning off 

PMT. 

4. Your tour guide will show you the flight path as the laser goes through the sample 

and how it gets through two “holes” (aperture and pinhole, in that order) on the 

way to the detector (or up through the ocular, via a movable mirror).  

5. It will be apparent that we can easily change angle, aperture and pinhole. How this 

is measured will be demonstrated. 

6. Your guide will have prepared (or taken from our “DLS Fun” sample holders) two 

strongly scattering latex samples, one “small” (typically 0.1 mm) and one large 

(ca. 1 um). They will be very slightly bluish in tinge, but normally DLS samples 

are quite clear.  

7. Begin by inserting the cell containing the larger latex into the beam (tour guide 

may wipe outside dry first, if it’s wet). Observe the beam hitting a screen several 

feet away from the instrument. With the room lights down, what do you see in the 

area surrounding the beam? (inserting the beamstop may help if there seems to be 

nothing to observe).  

8. Your tour guide will adjust the scattering angle to about 20 degrees and ask you to 

observe the sample’s scattering through the ocular, using “open” settings for 

aperture and pinhole.  

9. If the detector recorded the total scattered intensity from all the image you now 

see, how would that single intensity plot out as a function of time?  

10. Following instructions from the guide, adjust the front aperture. What do you see 

as you go to smaller and smaller aperture sizes? 

11. Now close down the pinhole setting. You should see a pinpoint of light.  

12. NOW we repeat the question 7 above: if the detector recorded the intensity from 

the tiny spot you now see, how would that single intensity plot out as a function of 

time?  

13. Open the aperture and pinhole, then take your detector for a walk! The tour guide 

will show you how to observe the speckle pattern as you walk the detector from 

low angles to high.  

14. Remove front lens (L1); how does this affect speckle size? How does it affect 

speckle speed?  
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 The tour guide will now explain some of what you saw and place it in the context of 
the experiment.  

 

 
One more thing.  
 
Your samples so far have been prepared to contain little or no dust. Your tour guide will ask you 

to prepare a cell holding drinking water.  

 
Periodic boundary conditions for diffusion and how DLS enforces them. 
 

In the Chem 4011 class (and in many other places, such as the Cantor & Schimmel textbook) it is 

discussed that if someone could somehow make a sinusoidal oscillation in concentration at a 

particular time t = 0, then Fick’s 2
nd

 law predicts exponential decay of that oscillation with a 

ExplanationE 
 

1. The speckle patterns we observed by looking into the instrument ocular are the result of the 

high spatial coherence of laser light sources.* These speckle patterns were moving because 

molecules in the system move.   

2. The speed at which the speckle patterns move can tell us how fast individual molecules 

diffuse.   

3. The latex particles whose speckle patterns we observed are huge. For smaller particles, the 

rates of motion easily exceed what can be followed by eye. Particularly, it would be difficult 

to capture the whole image at the necessary speed. So the whole speckle pattern is not 

measured, but only the intensity of a single speckle. Thanks to Einstein, we are able to convert 

the fluctuations in intensity at this one point into the size of the molecules that cause the 

scattering…but only after extrapolation to zero concentration.   

4. Selecting a smaller aperture made bigger speckles: you are squeezing light through an 

orifice, so it diffracts.  

5. Selecting a smaller pinhole lets you look at just one speckle, which will fluctuate in 

intensity if the laser light has sufficiently high spatial coherence. For a very tiny hole and 

highly coherent laser source, the light through the pinhole may appear to switch on and off 

and do this randomly (almost…we shall see that nothing is truly random). 

6. Walking the rotating arm detector around as a function of angle resulted in faster-moving 

speckle patterns (they might have gotten dimmer, too).  

7. Preview: run the correlator for small particle and large particle at the same angle; notice the 

difference—for the smaller of the two particles, the displayed function lies to the left, 

corresponding to shorter times.  

8. Preview: run the correlator to demonstrate the difference between low angle and high 

angles for the same sample.  

 

*Actually, a laser is not needed—only spatial coherence. An Israeli group once set up a DLS 

using sunlight through two widely separated pinholes. It worked great at noontime on sunny 

days, even though the light was not monochromatic!  
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characteristic time c. This is the basis of fringe pattern FPR and fringe pattern FRS. Stripe-

pattern FPR as practiced in the Russo lab and elsewhere relies on this behavior, too: the stripe 

can be expressed as a Fourier sum of sine terms and leads to multiple exponential decays, which 

are filtered out in the Russo instrument, except for the lowest, or fundamental, term. When initial 

conditions follow a periodic pattern expressible in such a sum, the problem is said to have 

periodic boundary conditions.  

 

What has this got to do with DLS? As seen during the visual exploration of the instrument, 

we merely insert a solution and turn on an instrument called an autocorrelator. There is no initial 

step to create a special concentration gradient. It turns out that DLS automatically selects a 

sinusoidal concentration gradient. The figure below shows the incident and scattered light 

vectors, along with the difference q.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Scattering explained as diffraction from Fourier components selected by 

the scattering geometry.  

 

The red lines in the figure, drawn at half the scattering angle , represent peaks in a particular 

sinusoidal Fourier concentration component. The actual concentration is the sum of many waves 

with different orientations and wavelengths, but scattering only couples to the one wave shown, 

oriented as it is, and with a period which satisfies the first-order Bragg’s law expression  

d =  /[2·sin(/2)]. 

 
Correlation Functions 

 

Unlike FRS or FPR, there is no “start pulse” to create the sinusoidal concentration profile. DLS 

works by making an almost endless series of “comparisons” separated by time. Ideally, one might 

observe all the speckles and watch how they change over time. This could be done, for example, 

using a frame grabber to capture the images. Each pixel could be “compared” to itself over a 

period of time to see how that pixel was evolving. In practice, as we saw when looking at the 

scattered light through the pinhole via the ocular of the DLS instrument, only a small area of the 

speckle pattern is observed—usually one to several “coherence areas”. The intensity at a given 

time I(t’) is “compared” to that at a later time, I(t’+t). “Compared” means “multiplied into”. The 

separation in time, t, is called the “lag time” and it is the independent variable of the DLS 

ki 

 

ks 

 qi   where│qi│= 2/d = 

4·n·sin(/2)/ 

d 

/2 
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experiment. The dependent variable is the correlation function, G
(2)

(t), which will be developed 

now.  

You observed the twinkling light, but those intensity fluctuations were not really random!  In 

fact, almost nothing is completely random---everything that seems random is “correlated” (i.e., 

not random) on some sufficiently short time scale.  For example, the Dow Jones industrial 

average produces a “signal” that fluctuates randomly about its mean value over some long 

enough time scale.  (For simplicity, pretend that the average value does not change—i.e., that the 

economy is a zero-sum game; in reality stocks go up as new wealth is generated, not to mention 

inflation.)  But if the market is high at some time t’, then it is also likely to still be high at some 

time t’ + , provided that  is a very short time (the reason for the prime—t’ instead of just t—

will be apparent soon; it does not mean time derivative).  Thus, if I put all my money into stocks 

today, I will probably not lose everything by tomorrow.  On the other hand, at some time t’ + 

where is very large, there is no telling what the stock market will be like. It could be higher 

or lower; stock value becomes uncorrelated with the initial value after a long time.  Investors and 

politicians would both love to know how long a bull market will last.  Light scatterers are 

luckier; as you will see, our measurements of how long the signal remains correlated  are simple 

and precise.   

 

 

 

 

 

 

 

 

 

 

Figure 4. Intensity fluctuations are “random” on a time scale  but 

“correlated” on a time scale .    

  

Quasi-random phenomena are followed theoretically and experimentally with the aid of 

correlation functions.  A correlation function is a mathematical construct designed to help 

determine how long a given signal stays the same.  For heavily damped phenomena such as 

diffusion in a periodic boundary condition, correlation functions decay with some characteristic 

time constant the "correlation time."  In the foregoing, the time  while .   

The autocorrelation function we measure will be that of the scattered light intensity: 

 

G
(2)

(t) = <I(0)I(t)> = ')'()'(
2

1






T

T
T

dtttItI
T

lim  <1> 

 

The 
(2)

 superscript indicates that G
(2) 

is a second-order autocorrelation function--i.e., one 

involving intensities, which are the squares of electric fields.  The use of a capital G indicates 

that the data are not normalized.  Later, we will see correlation functions like g
(1)

 which 

represents a normalized electric field autocorrelation function and g
(2)

 which is a second order 

 

 

t’ 

I(t’) 
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function whose baseline is normalized.  DLS notation is confusing; you will eventually get used 

to it.  

You should commit Eq. 1 to memory—it is the essence of what a correlation function does. 

The integral in Eq. 1 is a recipe. It instructs you to do the following:  1. Record the intensity vs. 

time for an infinitely long period of time 2T; and, 2. Take any and all pairs separated by the lag 

time interval tand "compare" them.  The comparison is done by forming the products.  When tis 

very short, G
(2)

(t) approximates the average of the squares because I(t’)  I(t’+t):  G
(2)

(0)= <I
2
>.  

At very long t, one obtains the square of the average:  G
(2)

() = <I>
2
.  Do you see the difference?  

Mathematically, <I
2
> is guaranteed to be larger than or equal to <I>

2
. The “equal to” situation 

corresponds to “no fluctuations”—i.e., I = constant. So G
(2)

 decreases with t if there are 

fluctuations or stays unchanged if there are no fluctuations; you already saw the optical steps we 

take to ensure there are fluctuations—do you remember them?   

The process of getting G
(2)

(t) is repeated for many values of t until G
(2) 

is known over a wide 

range of t. (Now you can see why we have t and t’; t is the independent variable for building the 

correlation function—the so-called lag time—but t’ is the controlling variable for recording the 

light intensity over a very long time, 2T.) Actual digital correlators construct G
(2) 

at many t values 

simultaneously, but it's easier for humans to imagine doing it for one value of t at a time. 

Operational details of how correlators work are discussed in an appendix for old-style correlators. 

New correlators are a mystery, and may combine custom-designed, fast chips with the central 

processor in a personal computer to “build” and display the correlation function.   

 

 

 

 

 

 

 

After some time, the signal in the correlator is well approximated
2
 by: 

 

G
(2)

(t) = B(1 + fg
(1)

(t)
2
) <2> 

 

In this expression, B and f are experimental parameters that will be discussed soon.  The quantity 

of main importance is g
(1)

(t), the electric field autocorrelation function. It has to be extracted 

from the measurable G
(2)

(t) by solving Eq. 2 at each value of t measured. Rather than write that 

equation now, we wait to introduce a normalized version of G
(2)

; see below. Meanwhile, just 

know that in many cases, g
(1)

(t) is a simple exponential decay: 

 

g
(1)

(t) = e
-t

    <3> 

 

where  is the decay rate (the inverse of the correlation time).  So we can write <2> as: 

 

                                                 
2
In addition to the usual approximations having to do with finite acquisition time, another important approximation is 

that the scattering is homodyne and a random Gaussian process, and Eq. 2 relating intensity and electric field 

autocorrelation functions is sometimes referred to as the Siegert relationship.  

Correlation functions are approximated, never measured, because 

the infinite time limits of the integral in Eq. 1 can never be achieved 

in practice (infinite time being impractical, the actual requirement 

on T is that it must be very many correlation times; as a bare 

minimum, we might require that T > 10
4
.  
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)1()( 2)2( tefBtG    <3.5> 

 

For simple translational diffusion, the decay rate  is:   

 

 = 
-1

 = q
2
Dm   <4> 

 

where Dm is the mutual diffusion coefficient. The scattering vector magnitude, q, is: 

 

q = 4·n·sin(/2)/o   <5> 

 

where  is the laser wavelength in vacuo, n is the refractive index of the solution, and is the 

scattering angle. Thus, the decay rate is lower (correlation time is longer) at low scattering angles 

than at high ones. You can also slow the fluctuations by shifting to a longer wavelength.  The 

physical reason is that the molecules must diffuse farther to change the speckle pattern at low q.  

The distance scale associated with any scattering experiment is inversely proportional to q:   

 

Scattering Distance Scale = 2/q  <6> 

 

You can think of q as the “fineness” or “spatial frequency” of a ruler. A ruler that is divided into 

very fine marks—that is, a high-q ruler—permits you to determine details of an object. For 

example, you could measure the length of a pencil as 8.2 cm with a good ruler, but with one that 

lacks fine markings, you could only guess 8. Thus it is with DLS: at high q (high , short o) you 

can see short-range details of the motion. The DLS ruler has about 10
5
 tick marks per centimeter 

(for typical angles and wavelengths). The distance between tick marks is therefore about 6300 Å.  

The quantity f in Eq. 2 is an instrumental parameter (0 < f < 1) related to how many speckles 

the detector sees (fewer speckles correspond to higher f values—i.e., “taller” correlation 

functions as you saw during the observation period). We can change the value of f by pinhole and 

aperture settings. Other factors that affect it are solution scattering level compared to solvent 

scattering (see below), laser design, PMT dark count, and the degree to which the incident beam 

has been focused.  

The parameter B is a baseline. It is proportional to the square of the average intensity, but 

some modern correlators cover this up by pre-normalizing the baseline such that the values at 

long sample times are about 1 (give or take a little, due to noise). Each channel reported is the 

instrument’s latest determination of the quotient  

g
(2)

(t) = 
B

tG

tG

tG )(

)(

)( )2(

)2(

)2(




. This is called the normalized second-order autocorrelation function 

or homodyne correlation function. Putting it all together, we see that the correlation function has 

the form of an exponential decay on top of a baseline, as shown in Figure 5.   

 

 

 

 

 

 

B=1 
g

(2)
 

t 0 

0 

f 
1+f 

tDqeftgftg
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Figure 5. The measured correlation function is an exponential sitting atop a 

baseline.  

 

Channels representing large lag times have a value near 1; early channels will have a value near 

1+f. The usable, interesting quantity is 
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or its square root,  
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




.   <6.5> 

 

Correlator Design 
 

There are two basic types of correlator, linear and log-time.  The Langley-Ford 1096 shown in 

Figure XXX was almost the epitome of the classic linear design.  A linear correlator measures 

the correlation function at discrete “lag times” according to t = i where i = 1, 2, 3.....NCHAN 

and  is called variously the channel time, sample time, or “sampling time.”  The LFI-1096 

could actually operate with three separate values of simultaneously, but normally it just had 

NCHAN = 272 linearly spaced channels. The limitations of such a device for multi-

exponential signals are apparent from the rule of thumb that, in order to measure a decay 

process with characteristic time t1, you must devote about 64 channels before t1 and about 80 

channels after t1. So…you would normally set  to t1/32 and use about 96 channels to capture 

that decay process. If another, slower, decay were located at longer times, you are quickly 

running out of channels with which to capture it. Thus log-time correlators were invented in 

the 1980s. In these, the lag times are spaced like this: , 2, 4, 8, 16, 32, 64 etc. 

The early log-time correlators actually did not give enough channels for measurement of 

samples containing almost monodisperse particles; thus, a modern instrument typically uses a 

mixed quasi-logarithmic approach: a block of 16 channels at D, a block of 8 channels at 2D, a 

block of 8 channels at 4D, a block of 8 channels at 16D, 8 channels at 32 D, etc. Our ALV 

correlators have this architecture, which you can see by inspecting the file named alvsing.lag 

(usually in c:\ on our DLS computers).   



http://macro.lsu.edu/howto     DLS_Minicourse.doc   Paul Russo  February 2012 

14 Copyright Paul Russo 2012 

The actual appearance of correlation functions 
 

Probably, the correlation function on your computer screen will not look like the one in Figure 5. 

That is because various scale choices are available. In the good old days of linear correlators, all 

correlation functions really did look like Figure 5, but with the development of log-time 

correlators (see box, above) the time range became too large for linear scales. So, people started 

showing a log-time scale. About the same time, correlators were integrated into computers. Then 

it became very easy to show log(g) vs. t (semilog) and log(g) vs log(t) (log-log) representations. 

The four popular representations are shown below, along with how you use them to estimate the 

correlation time, . The representations involving logarithmic y-axes have considerable noise at 

long lag times. This is because the correlation function approaches zero (after baseline 

subtraction) and log(0) = -. Noise has a huge effect then and, indeed, some channels cannot be 

computed at all because, due to noise, the baseline-subtracted, normalized value drops below 0 

and log(negative) cannot be computed. The noise is less evident on the linear y-scale of the top 

two correlation representations. In fact, on a linear y-scale, you will ordinarily see more noise at 

low sample times due to a phenomenon known as photon starvation (not discussed here).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Various forms of autocorrelation function available on most correlators. 

 
Using the equations to get the results out of your data 
 
From Figure 5 and Eq. 3 - 3.5, it is possible to see how to obtain the mutual diffusion coefficient. 

There are two options:  

1) Linearization followed by linear regression 

 subtract off the baseline (i.e., 1.0) 

 take the natural logarithm of what’s left 
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 fit that to a straight line using, for example, Excel Analysis Toolpack (better yet, do it 

manually with a ruler).  

 The negative of the slope of that line is 2. Divide 2 by 2q
2
 to get D.  

2) Nonlinear fitting. In this method, you try to fit Eq. 3.5 using a nonlinear fit algorithm, such as 

Excel’s Solver (see HowTo guide for Solver).  

Either way, the resulting diffusion coefficient is Dm, which differs in principle from the diffusion 

coefficient extrapolated to infinite dilution, Do. For a dilute sample, it will turn out that Dm  Do.  

Once you know Do, the hydrodynamic radius is given by: 

 

Rh = 
ooD

kT

6
  <7> 

 

where kT is the thermal energy (k = Boltzmann’s constant, 1.38  10
-16

 g·cm
2
·s

 -2
·K

-1
, T is the 

Kelvin temperature, and o is the viscosity). And that’s it—that’s particle sizing!  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
Practice 
 

Now it is time to analyze some data to see how this goes. Your tour guide will choose one of the 

latex samples observed during the visual tour and obtain a correlation function. These steps 

should be followed:  

1. The temperature bath will be set to some convenient value, usually 20
o
C to 25

o
C.  

2. Pinholes will be adjusted to give some reasonable value of f (usually >0.1).  

3. After a short run, the approximate value of f will be estimated by inspecting the display 

screen. The tour guide will point how this is done, but it is evident from Figures 5 and 6.  

4. The approximate value of  will be estimated by inspecting the display screen. The tour 

guide will point how this is done, but it is evident from Figure 3. 

5. The acquisition time will be set to at least 10
4
 .  

What does Rh mean?  
 

Sometimes newcomers to DLS do not know what Rh really means, so let’s 

be very clear about that.  

1. If your object is a solid sphere of radius R, then Rh = R. 

2. If your object is spherical “bubble” (e.g., liposome) with outer 

radius R, then Rh = R (exception: some liposomes may “wiggle” 

and that could alter Rh).  

3. If your object is a sphere on the outside, but has inclusions of any 

shape inside, then Rh=R.  

4. If your object has some other shape—such as cylinder, cube, 

polymer chain or star—then Rh is the radius of some hypothetical 

sphere that diffuses as fast as your object does.  

5. If your object is a semidilute solution, gel, etc., all bets are off.  
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6. The data will be saved on the computer drive and on a portable USB drive provided by 

the student.  

7. The student will be told T, o,  and n.  

8. The student can now go home and use the data and the equations above to obtain Rh. The 

student should obtain Rh by linearizing the data as described above AND by using a 

nonlinear least squares fitting algorithm (see Solver HowTo guide and/or ask tour guide). 

For normal latex standards, the sizes obtained by these separate methods should be very 

close.  

 

Data handling options 
 
After the student has obtained a hydrodynamic by linear regression and by nonlinear least squares 

fitting, obtaining essentially identical results, the outcome can be checked against other software, 

such as that provided by the vendor of the correlator. These always include “cumulant” fits and 

“multiexponential” fits. 

 

Cumulant fitting. The cumulant fit is much like the linear regression the student used, but it 

permits the drawing of a polynomial, rather than a straight line, after the subtraction and log-

taking steps. These equations are followed:  

 

First-order cumulant: tKtg  o)](ln[ )1(    <8a> 

Second-order cumulant: tKtg  o)](ln[ )1( + 22

2
t


  <8b> 

Third-order cumulant: tKtg  o)](ln[ )1( + ...
232

3322 


 tt


 <8c> 

 

The intercept Ko should be zero, but may not be due to slight baseline issues.  

 

The jargon of DLS is confusing. In particular,  is called the “first cumulant” no matter what 

order of cumulant fit was used to get it. But why would you ever need higher-order polynomial 

fits in the first place? The answer is that many samples contain diffusers of different sizes, so the 

plot of ln[g
(1)

(t)] vs. t exhibits curvature instead of being a straight line. In this case,  is obtained 

as the initial slope of a plot of  )(ln )1( tg vs. t and it represents a particular average decay rate,  .  

 

  
dt

tgd

t

)(ln
lim

)1(

0
  <9> 

 

To pursue this a bit, we write the actual correlation function as a sum of exponentials, each with 

amplitude Ai and decay rate i.  

 

...)( 321
321

)1( 
 ttt

eAeAeAtg   <10> 

 

Do this exercise: Put Eq. 10 into Eq. 9 and try to show that  becomes the average decay rate,  
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321

332211

AAA

AAA




     <11> 

Polydispersity Parameter. As a simple measure of the polydispersity, DLS people often form the 

dimensionless quotient 2
2 /  . This is sometimes called PDI, but it should not be equated with 

Mw/Mn in polymer science. The parameter 2
2 /   would be zero for monodisperse samples. For 

typical polymer latex, it might be about 0.03. When  
2

2 /   > 0.3, it is time to think about other ways to fit the data besides cumulants.  

 

Problems with cumulant fitting.  

1. According to Eqs. 6.5 and 9, you have to subtract the signal, take a square root and take a 

logarithm. This gets ugly as the signal decays into the baseline because noise will sometimes 

drive the signal negative. We cannot take the square root of a negative number (complex 

numbers not withstanding), nor can we take its logarithm.  

Solution 1: you can take just the top 90% of the signal above baseline—e.g., include 

those channels where g
(2)

(t) runs from about 1+f  to about 1 + 0.1f.  

Solution 2: Another solution is to cut channels off when the computed noise in that 

channel rises to one-third of the channel value.  

Solution 3: Another solution is to locate the inflection point in the g
(2)

(t) vs. log(t) plot, 

then move halfway from that point to the baseline…this is qualitative.  

Solution 4: you can avoid the square-root taking—e.g., replace Eq. 8b with something 

like this:  

 

tKtg  o(2]1)(ln[ )2( + )
2

22 t


  <12> 

 

2. What’s the initial part of the curve? In strongly non-exponential correlation functions, 

following the suggestions of the previous paragraph leaves enough long-time data points that 

you cannot fit cumulants without quite a lot of terms. In this case, you can just fit the data 

points at lower times. But how low?  

a. Solution:  Long ago, Ken Schmitz suggested to keep reducing the number of 

points, compute  , and plot the result against the number of fitted points. Such 

“asymptotic analysis” may identify the initial decay rate.  

3. Who says the baseline really ought to be 1? A unity baseline is appropriate for perfect signals. 

Any number of things can mess up the signals—dust, laser drift, dust in your index matching 

bath, etc.  

a. Solution 1: re-perform the cumulants fit using a baseline other than 1.0; for 

example, you might try 0.9995 or 1.0005. In some cases (low-f measurements) it 

really matters. Keep track of  variation and use it as part of your error estimate.  

b. Some groups have gone after this problem by using a nonlinear least squares 

version of cumulant-like fitting:  

 )()2( tg B[1 + f·[exp(Ko - t + ...
232

3322 


 tt


 )]
2
]  <13> 

An Excel spreadsheet is available from us to fit data to this form using Solver, 

Excel’s nonlinear least squares routine.  
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Nonlinear least squares fitting.  In addition to trying to linearize the data and then patch up the 

minor curvature with a polynomial fit as the cumulant method does, we can fit the exponential 

decay directly. For a hypothetical perfectly single exponential decay, our equation is:  

 
tBfeBtg  2)2( )(    <14> 

This equation can be described by three parameters, B, f and . We can fit it using Excel Solver, 

but correlator vendors typically supply programs to do this, too. Next, consider a bimodal 

mixture—two diffusers with amplitudes A1 and A2 and decay rates G1 and G2.   

 
2

21
)2( )()( 21 tt

eAeABtg


   <15> 

Now, we have 5 parameters to fit and one important thing to realize: there is no uniquely best fit 

to those parameters! That’s right…unlike cumulants/polynomial fitting, where every necessary 

term (, 2, etc.) appears as a coefficient of t, t
2
, t

3
, etc., now we find that the decay rates appear 

in transcendental functions, such as the exponential. When this happens, the best parameters 

cannot be found by an analytical expression. Instead, computer algorithms have been designed to 

find parameters that closely approximate the data. The SOLVER algorithm you probably used to 

analyze the data provided by your tour guide is an example, and so is whatever vendor-supplied 

algorithm you are practicing now. All these are a trial-and-error processes, and it sometimes 

matters where you begin the search. You must guess the beginning parameters of the search. 

Once the algorithm provides its best answers, you should try several different guesses to ensure 

that the algorithm is not getting fooled by a bad initial guess.  

 



http://macro.lsu.edu/howto     DLS_Minicourse.doc   Paul Russo  February 2012 

19 Copyright Paul Russo 2012 

Part II. Solo Experiments 
 
IIa. Your First Solo Experiments: Mixed latex spheres.  
 
Goals:  

1. Measure Rh and Rg of two different latex spheres.  

2. Mix them at known intensity ratios. 

3. See if you can get the correct Rh and Rg values after mixing.  

 

Hints:  

1. DLS cannot resolve spherical particles very well unless they are separated in size by more than 

about 1.2 (multiexponential fits) or 2 (CONTIN).  

2. It will be hard to get Rg unless the spheres are bigger than about 100Å (depends on 

wavelength, quality of instrument alignment, dust, etc.)  

 

Time Required: Maybe 1 or 2 days the first time 

 

Recommended procedure: 

Monodisperse Stock Solutions 

1. Measure the scattering level for toluene and for water, as always, to establish a Rayleigh 

reference point.  

2. Choose 2 latex spheres with big enough size separation (example: diameter = 250Å and 

750Å) 

3. Prepare two stock solutions…they might just barely show a slight bluish tinge in a 1-cm 

pathlength cell. You do this by adding one drop (or less) of latex to a plastic cell and 

adding dust-free water.  

4. Remove dust by filtering if necessary (may also remove aggregates). Choose filters 

according to the size—you don’t want to remove the unaggregated particles.  

5. Try to get the scattering intensities of the two solutions about the same at some reasonable 

angle (perhaps 60 degrees).  

6. Set the apparatus for low coherence and measure the I vs. q dependence.  

7. Re-set the apparatus for high coherence and measure correlation functions as a function of 

angle.  

8. Analyze (Guinier plots or nonlinear fit for SLS,  vs q
2
 for DLS, etc.) 

9. For each stock solution, does Rh = Rg·(5/3)
1/2

 ? It should! If not, get help (however, if one 

latex is too small to measure by SLS, don’t worry about it much).  

 

Bidisperse Test Samples: 

1. Make a 50:50 mixture by volume. Because you know the scattering powers of each solution 

at any angle, you will know the scattering amplitudes A1 and A2 to expect at any angle.  

2. Measure SLS and DLS at various angles.  

3. Analyze by Guinier (or nonlinear fit) for SLS and  vs q
2
 for DLS. You will probably note 

that 3CUMU and 1EXP fits are not in great agreement anymore—the effect of 

polydispersity (the two algorithms respond differently to it). What is the average Rh and Rg? 
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The first is the inverse of the Z-average of the radii, while the second is the square root of 

the Z-average of the squares of the radii. Write equations and see if this works!  

4. Now analyze the DLS data for A1,1,A2,2 using a bi-exponential fit. Plot the 1 and 2 

results vs. q
2
. Still looks OK? Gives the same sizes as for particles measured separately? 

5. Plot the A2 and A1 data a’la Guinier (or use a nonlinear fit). Do you get the same values you 

measured for the particles individually? Why or why not?  

6. Try to place the A1 and A2 values on an absolute scale. That is, associate the total scattering 

intensity (A1 + A2) with a Rayleigh factor, R (See the Zimm plot HowTo for this: 

http://macro.lsu.edu/howto/#SCATTERING  -- specifically, the file called GuiDe Manual; 

an equation in here gets you from measured intensities to Rayleigh factors). Hint 1: In most 

cases, A1 and A2 are effectively isolated from the solvent scattering—you do not have to 

subtract that. Hint 2: the coherence parameter f may vary with angle—I think you have to 

take this into consideration. Try it and see!  

7. Now split your Rayleigh factors into components R1 and R2.  

8. Plot against q
2
 and/or try a nonlinear fit for spheres. Do you get the same Rg values as you 

measured for the particles separately?  

  

 

 

 
 
 

http://macro.lsu.edu/howto/#SCATTERING
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IIb. A Second Solo Experiment: Dynamic Light Scattering Of Dilute Polymer 
Solutions….including Tips on Preparing Clean Samples, Expected vs. Actual 
Coherence, and Concentration Dependence 
 
Goals:  Try to get a molecular weight distribution for a polystyrene sample in some convenient 

solvent, e.g. toluene or THF.  

 

Hints: Be patient—this ain’t easy.  

 Weak polymer solutions will be measured.  For the first time, we have to be concerned with 

the adequacy of the signal over solvent level. 

 In order to make measurements at all, the solutions must sometimes be more concentrated 

than one would wish.  Then the results have to be extrapolated in to zero concentration in 

order to be meaningful.   

 Much greater care has to be paid to cleanliness.   

 
Time required: several days for the first time…you get faster later. 

 

Plan:   

 We will use a commercial polystyrene (ideally, the same one selected during some simple 

GPC experiment) 

 We will try to make 4 dust-free samples with different concentrations 

 We will get their diffusion coefficients correctly, and extrapolate the diffusion 

coefficients to zero concentration.  

 Extend to zero angle (if required).  

 We will study the effect of dilution on the coherent scattering amplitude.   

 We will perform inverse Laplace transform operations to get Amplitude vs Gamma 

distributions. 

 We will convert these distributions to Concentration vs Molecular weight distributions, 

making appropriate assumptions.  

 Later, we can use these same samples for conventional Zimm plot analysis and, perhaps, 

GPC/light scattering.   

 

Preparation of Clean Samples: 

We cannot hide it any longer; the worst part of light scattering is preparing clean samples.  

With the latex samples we measured earlier, it was very easy:  latex particles are almost as big as 

some dust particles and they can almost “defend” themselves from dust.  In measuring most 

polymer solutions, you will not be so lucky!   

Therefore, the first step is to prepare clean solvent!  Yup.....just solvent, no polymer.  

Polymer analysts live by these words:   

 

 

 

 

Measure Nothing First!   
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If you cannot do solvent well, forget the rest.  Once you are measuring nothing well, measure 

something unimportant next, then measure the important perfectly (MNF  MSUN  MIP)   

But nevermind.....what will you put the clean solvent in?  Clean Cells! 

 

Clean Cells: 

In our lab, we use three cell-cleaning strategies: 

1. Water Cleaning 

--Clean cell with soap, water, Chromerge or Alcoholic KOH 

--rinse 

--TEST every cell 

--dry 

--store in aluminum foil somewhere clean 

2. Acetone Percolator Cleaning 

--Clean cell with soap & water 

--Rinse extensively 

--pop on Acetone Percolation device 

--Cells often dry quickly 

--TEST some cells, dry and hope for the best.   

3. Cell surface modification (beyond the scope of this course) 

 

 

 

 

 

 

 

 

 

 

 

 

What’s Clean? 

We define a clean sample as one in which no dust appears when the cell is inserted in the 

instrument and observed using the Argon ion laser at some fairly low angle, like 30
o
.  This is 

a stringent test:  the instrument’s optical magnification is about 40-100, and you can view a 

very large volume in the instrument, even though the measured volume is usually set to much 

less.  Particles with sizes < 0.1 m can be detected (not resolved, but detected).  Over the 

years, many samples have been prepared that can be observed for many minutes without a 

trace of dust.  While such samples do exist (and if you don’t believe it, some have been 

retained in a kind of dustless “Hall of Fame”) it is more common that one or two dusts will be 

observed eventually.  Such samples often can be measured (maybe after centrifugation).  If 

you’re seeing something all the time, forget it and start over.  Stay patient; some systems and 

cell types are harder to clean than other others, but I have never seen a system that cannot be 

cleaned---we always win!  (Sometimes, winning means preparing just a few samples a week, 

but it’s worth it).   
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Clean Solvent:  

 Distilling can help (but the glassware should be tested with clean water; for example, pour 

water from the collection flask into a clean plastic cell and see if it comes out OK) 

 Filtering can help (always check the chemical compatibility tables) 

 Centrifugation (the last resort) 

 

As a first attempt, see if you can just filter a great grade of solvent into one of your clean cells.  

For most solvents, the pore size should be 0.1 m.  There isn’t much “dust” smaller than 0.1 

m.  We have occasionally found smaller filters useful, but the commonly available 0.02 

mAnotop filters must be tested carefully; not all these filters work.  The ones that work at 

all work very well.  We have large batch filtration devices for making lots of clean solvent if 

that helps.  Ordinarily, we make it in small quantities that can be prepared on a syringe filter.   

 

Clean Polymer:  

 Yup.....sometimes, it really helps to “preclean” the polymer.  This is particularly true of high-

surface area polymers (e.g., any powdery or fibrous polymer).  Your average organic chemist 

(and is there any other kind?) likes to pad his or her yield with lots of crud from filter paper.  

Pelletized solid polymers (polyolefins, for example) are sometimes fairly clean.  To clean your 

polymer: 

 Dissolve it in clean, tested solvent (at 1-2% typically) 

 Prepare a clean nonsolvent (test by holding it in the laser beam) in a clean beaker 

 Filter the polymer solution into the nonsolvent, using the smallest filter that does not  plug or 

require excessive pressure.   

 Vacuum dry or freeze dry.  Caution:  some polymers misbehave on drying.   

 

Filter Advice:  

 Never force a solution rapidly through a small filter.  Polymers can be degraded by shear 

forces in filters.  This is a particularly true of large polymers--molecular weights above one 

million or perhaps even less for rigid, extended polymers.   

 It should almost never be necessary to filter a polymer solution more than once!  If you have 

to do this, it means the collection vessel is not sufficiently clean or that you picked too large a 

filter size.  You will often see “frequent filterers” in the literature:  these are people who cannot 

clean their cells. 

 

Clean Solutions: 

 FINALLY!   Take your clean polymer, weigh it, and add the clean solvent, weigh that, to 

obtain.....a dusty solution!  Oh well, the best-laid plans of mice and men fail.  Usually, you will 

make your solutions in a volumetric or other large, screw-top glassware that will be imperfectly 

clean.  With any luck (and you should not be in the light scattering game unless you are lucky) 

the dust will be of the easily removed, large variety.   

 

Strategies vary for making a series of clean solutions, each with a different concentration:   

1. Direct:  If you have a large amount of polymer and many clean volumetrics, then just go ahead and 

make the solutions directly in the volumetrics.  This is the most accurate way--especially if you 

are sampling the output of a large factory without regard to preserving some precious polymer.  
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However, each solution must be separately cleaned....and you have to test that the concentration 

of each solution is not affected by the cleaning. 

2. SuperClean Stock:  Make a stock solution in a volumetric and clean it to perfection.  You will 

sometimes find that the stock solution has changed its concentration during cleaning.  It is 

possible to compensate for this by measuring the concentration gravimetrically (or 

spectroscopically) after cleaning.  With a clean stock solution available, you can make dilutions--

either in clean volumetrics (correct) or directly in clean cells (may involve approximations).   

3. Preparing dilutions in cells.  The polyethylene tips on Pipetman type adjustable pipets are often 

quite clean (and they can be cleaned easily just in case).  These adjustable pipets can simplify 

preparation of diluted polymer solutions from the precleaned stock.  Sometimes the error of 

assuming volumetric addition is small.  Other times, you may wish to actually obtain proper 

concentrations, as follows (example is for 20% cstock): 

 0)  determine the stock solution concentration as c (g/mL) and w (g/g)   

 1)  weigh a clean cell 

 2)  deliver 0.200 mL of stock solution to a clean cell 

 3)  weigh 

 4)  add 0.800 mL of clean solvent 

 5)  reweigh 

 6)  compute c from the known weights 

 

Expected vs. actual coherence values:   

Still with us? If so, you have finally earned the right to measure your samples. Let’s start by 

bracketing the problem: quickly measure the lowest concentration at lowest and highest angles; do 

the same with the highest concentration. You aren’t going to keep these runs—just look at the data. 

You are looking for the coherence parameter and, roughly, the decay times. In an ocular-equipped 

system, you are also literally looking at the scattering from the samples to see if there is stray light, 

rapid twinkling or sluggish twinkling, etc.  

The coherence parameter has to be compared to the expected value, which is what you would 

get with a very strong scatterer in your same solvent. Example: if you are measuring a very low-M 

polystyrene in toluene, try to get the coherence parameter for some high-M polystyrene in toluene (or 

a crosslinked latex in toluene). Let fmax = the f value you would measure with a very strongly 

scattering sample that exhibits no long-term decay anomalies.  Examples are latex, microemulsion, 

and silica sphere solutions.  The sample should also exhibit no very fast, short-time decays.  The 

value of fmax depends on the aperture and pinhole settings, laser wavelength, beam focusing, 

photomultiplier dark count rate and, to lesser extent, scattering angle.  The expected f value is 

reduced from fmax due to incoherent (on the time scale of the autocorrelator) scattering from the 

solvent.  The figure below schematically shows the correlation functions of latex spheres and pure 

solvent (e.g., water or toluene).  A linear y-scale and log x-scale results in sigmoidally shaped plots 

for a normal exponential decay.  The plot is drawn for high f values (i.e., the low-time y-intercept is 

almost twice the baseline).   
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The scattering from rapidly diffusing solvent molecules only remains correlated for very short 

times, inaccessible to correlators.  The limit for the LFI-1096 is 10
-7

 s, as shown; a stock ALV-

5000 is limited to 2  10
-7

 s.  An ALV-5000 with the fast-card option and the new Brookhaven 

BI-9000 can reach about 1 x 10
-8

 s.  However, the solvent decay time lies still further below this 

for most normal solvents.  Thus, the expected f value for a solvent is usually zero. The expected f 

value of weakly scattering polymer solutions will lie in between zero and fmax.  It can be 

computed from: 

 

fexpected = fmax  
A

A A A A

p

s s p p

2

2 22 









  <16> 

 

where Ap is the scattering amplitude associated with the polymer and As  is the scattering 

associated with solvent (i.e., the solution scattering is Atotal = As + Ap).  Thus, if the solution 

scattering is twice the solvent scattering, expect f to be decreased to 25% of its maximum value.   

 

What if f is actually less than fexpected?  This is very valuable information!  It can mean two 

things: 

 

1)  The experiment is not being conducted in the homodyne mode---i.e., there is   

 stray light or a deliberately added local oscillator to force the heterodyne   

 condition.  Check carefully for stray light.  

2)  The polymer dynamics are too fast to capture with the correlator.   

 

Conversely, if the measured f value is equal to the expected, it means that the correlation function 

has been collected correctly in the homodyne limit and that all the decay modes present have 

been captured.   

 

4)  The total acquisition time 2T should be something like 10
6
 - 10

9
.  It could be even longer in 

cases where very quiet data are required for the initial part of the decay (where the noise is 

determined by photon starvation--i.e., there are few photons per sample time for very short 

times).  Since about 1990, when correlators became able to measure ridiculously long lag times, 

many investigators have relaxed the requirements on 2T. At a bare minimum, 2T should be >10
4
 

(in the case of several  values, 2T should exceed the longest  by 10
4
).  

Solvent 
Latex 

log10(t/s) 

G
(2)

 

-10   -9    -8   -7   -6   -5   -4   -3   -2   -1   0   1   2   3   4 
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Establish Concentration Dependence:  

First, we will need a parameter called kD describing the concentration dependence of diffusion. 

The ALVAN program we use and/or the ALV stock routines perform a so-called “cumulants” 

analysis to obtain the average decay rate  = q
2
Dm.  The diffusion coefficient is given by: 

 

Dm  = Do(1 + kDc)  <17> 

 

where Do is the zero-concentration extrapolated value, and kD is concentration dependence, 

which contains thermodynamic and frictional parameters.  Sometimes this expression is written 

with more detail: 

 

D = M(1- v2c)
)1( ckfN

c

foa

T
















   <18> 

 

where (c)T is the osmotic susceptibility, Na is Avogadro’s number, M is the molecular 

weight, v2 is partial specific volume of the polymer, fo is the friction coefficient for the polymer, 

extrapolated to zero concentration.  For a derivation, see Yamakawa:  "Modern Theory of 

Polymer Solutions".  For still another form of this equation, see Eq. 17 of Varma et al., which is 

derived using an expression for (c)T which you should look up in, for example, Yamakawa's 

book or Tanford's.     

 

In any case, our goal here is not to worry about the dependence of diffusion with concentration; 

this is a research project.  Our goal is to verify that the effect really exists and then to "extrapolate 

it away," which is the standard approach in polymer analysis.  By measuring the diffusion 

coefficient at several concentrations, the value extrapolated to zero concentration (where there is 

no thermodynamic interaction or interference from neighboring polymer molecules in solution) 

contains just information about the molecule.  Specifically, the zero-concentration diffusion 

coefficient is related to molecular weight by: 

 

Do = M


   <19> 

 

where  and  reflect the dimensions and scaling properties of the polymer, similar to the Mark-

Houwink intrinsic viscosity parameters.  It should be noted that these parameters are not very 

well-determined in the literature at the low molecular weights of present concern.   

 

Conversion of Decay Rate Distributions to c vs M results:  

This step is somewhat optional. You can try it if your 2/
2
 parameters exceed about 0.3. In 

that case, we recommend you do the Milk exercise that follows. Then go to the Appendix on 

Laplace Inversion. Following steps similar to those for the milk experiment, you can come up 

with your own c vs M distribution. You have the necessary kD value. You can assume stuff about 

shape and the X factor relating Rg to Rh. It comes down to an Excel operation on the Amplitude 

vs  data after that.  
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IIIc. A Third Solo Experiment: Dynamic Light Scattering Of Milk—DIY Data Fitting 
for Multiexponentials 

 

It is not always realized, especially by chemists, that a really important thing about 

macromolecules is that they are big. Colloids are also big, but they are not necessarily molecular. 

In this exercise, we are using DLS to measure the size distribution of a common colloid: milk. 

Materials safety data sheets are not required, except if you suffer milk allergy and plan to drink 

the supplies.  

What we are going to do is measure an autocorrelation function, as we already have for latex 

spheres and for polystyrene. Whereas latex particles are very uniform in size, yielding a single 

exponential decay, and commercial polystyrene is reasonably uniform, yielding a correlation 

function that might be handled by cumulants, colloidal milk contains broadly polydisperse 

particles of fat bound up with proteins and other molecules.  The correlation functions will have 

pronounced nonexpnentiality. Two “Laplace inversion” routines will be used to sort out the 

decay spectrum, and then you will be asked to make a conversion to a size spectrum on your 

own, making the appropriate corrections for particle form factor, assuming a spherical particle 

shape. Your answer can be tested against the “crude but effective” software that we use in our 

own research.   

You are reminded that the main quantity of interest in DLS is the electric field 

autocorrelation function, g
(1)

(t) which for a polydisperse sample consists of a sum of exponential 

decays: 

g
(1)

(t) = 
 t

i
ieA   <20> 

An amplitude Ai is proportional to molecular weight and concentration of species i, modified by 

the particle form factor for sufficiently large particles:   

 

Ai ~ ciMiP(qRg,i)  <21> 

 

At infinite dilution, a decay rate i is related to the diffusion coefficient (hence, hydrodynamic 

radius) of that particle and the scattering vector: 

 

i = q
2
Do = 

iho R

kTq

,

2

6
  <22> 

 

where Stokes' law was used in the last equation to relate Do and hydrodynamic radius Rh through 

the viscosity .  In the present experiment, we will assume we are at infinite dilution.
3
  

 

The particle form factor depends on shape; you must know it (or assume it) and then refer to 

tables (for example, in Kratochvil chapter in the famous book by Huglin).  Also, in order to 

obtain P(qRg,i) one must convert from Rh,i to Rg.i.  This conversion also requires the assumption 

of a shape.  For solid, spherical particles (Rh = R) of uniform density, we can write: 

                                                 
3
A possible “cure” if one is not really at low enough concentration would be to make a kD correction, assuming that 

kD does not depend strongly on molecular weight and that the overall polymer concentration can be used. 
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Rg.i = XRh,i  <23> 

where 

X = 3 5/   <24> 

 

You will prepare a milk suspension, reasonably free of dust, and measure it, probably at  = 90
o
 

(depending somewhat on wavelength). We will supply g
(2)

(t) vs t data by e-mail or USB key.  

 

WHAT YOU MUST DO 

 

1. Do It Yourself Data Fitting  

You should try to obtain the distribution c vs. Rh yourself. One way to do this is to write a 

short program that first reads and then plots the experimental g
(1)

(t) data on screen. Add a little 

routine that generates a fitted data set according to Eq. 1, where you supply the values Ai and i 

manually. You could plot this fitted line in a different color easily enough (see programming 

examples from beginning of course). In a Visual BASIC implementation, it would be simple 

enough to use menubars to adjust the A’s and ’s. It is also quite possible to use Origin or a 

spreadsheet to good advantage for these same purposes. In Origin, look under the Fit/Parameters-

Simulate option. For day-to-day use, this is slow compared to a purpose-built program, but it’s 

OK for what you are doing in this exercise. I encourage everyone to at least try to write their own 

program. "Canned" graphing packages are great until you have to use them again and again. Then 

their general purpose baggage becomes too much. An intermediate solution is using the scripting 

option of Origin or Excel. A screenshot from an Excel worksheet using Solver to fit two 

exponentials is shown below. We can provide a copy of this, but it’s a better challenge to write 

your own, starting from the Solver HowTo (http://macro.lsu.edu/HowTo).  

 

 
The best approach is to fit A vs. first. There is no way to tell a priori how many 

exponentials this will take. Make a good guess at by inverting the lag time at which the 

http://macro.lsu.edu/HowTo
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correlation function is actively decaying and try to fit the function with just one exponential.  

Semi-log plots (ln(g
(1)

(t) vs. t) can be very helpful. Then keep adding exponential decay terms 

until the randomness of the residuals no longer improves.  More than 3 or 4 exponentials will 

probably not be required.  

After you are satisfied with the fit quality, you can worry about converting the ’s to Rh’s 

and, subsequently, Rg’s. Then you can convert the A’s to c’s.  Well, actually you cannot directly 

obtain the c’s:  you lack the constant of proportionality in Eq. 14.  So, what you will do is divide 

through the amplitude Ai by MiP(qRg,i): 

 

ci,pseudo = Ai/MiP(qRg,i)  <25> 

 

where ci,pseudo is proportional to the concentration. But you must do something to estimate Mi 

from Rh.  To really do this right, you would need the density. But on the assumption that the 

density of all particles is the same, you could just replace Mi in Eq. 18 with 3
,iRh . However you do 

it, you should discover that fitting data this way is a very dicey business!  It will be interesting to 

see how close you can all come to each other.  A student will be appointed to gather the results 

and make this comparison.   

 

2. Use our Data Fitting 

We have several programs that reliably give fits to polydisperse data. After you have 

successfully fit the data and demonstrated your own method to me, you can use our software to 

see how close you came to the right answer. Appendix 1 tells a little about how our software 

works, and it gives good advice for the use of inverse Laplace transforms to fit DLS data. It is not 

as simple as pushing the CONTIN button on some commercial instrument.  

 

3. Milk Results 

In June 2009, an old friend asked me to look into the distribution of milk. Here are some 

results based on scattering at a single angle (always a bad idea) of 30 degrees from diluted milk 

in 3 grades. This is an easy experiment to do; comparisons to the Malvern zetasizer, which 

measures at 173 degrees, showed somewhat smaller sizes. An advantage of the Malvern, though, 

is that you do not have to dilute the milk at all. It’s clear that DLS can detect the difference in 

grades of milk; how accurate these distributions are is another matter entirely.  
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Appendix 1:  Data Fitting in DLS—Getting a Decay Rate Distribution 
 
Overview: Some of this is covered in the main part of the document; here we attempt a little 

extra detail….and inverse Laplace transformation.  

 

Linear Fitting: The simplest cases are latexes or other nearly monodisperse scatterers.  These 

are easily fitted using the usual linear fitting routines found in the classic book, Data Reduction 

in the Physical Sciences, by Bevington, or in the more modern but not necessarily better book 

entitled Numerical Recipes by Press, Flannery and Vetterling.  Our programs use Fortran code 

from Bevington, converted into QuickBASIC or PASCAL in some cases.   

 

 Equations 2 and 3 can be combined to read: 

 

G
(2)

(t) = B(1 + f e
-2t

)  <26> 

 

This is linearized to: 

 

y = ln(G
(2)

(t) -B) = ln(Bf) - 2t  <27> 

 

Thus, a plot of y vs. t has slope -2, from which Dm can be extracted, since  = q
2
Dm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows the ideal, linear behavior as a straight line.  Polydisperse samples look like 

the curved line instead.  The initial slope is called the “first cumulant” and given the symbol 
_

  

because it represents the average decay rate (You should try to convince yourself that 
_

  really 

does represent the average decay rate).  In order to get the first cumulant, a polynomial fit is 

performed on the y vs. t curve.  This is called cumulants analysis; the order of the cumulants 

analysis means how many terms:  a first order cumulant analysis just fits a straight line, a second 

order analysis a quadratic, and the third order analysis a cubic, etc.  In practice in our laboratory, 

we commonly take the first cumulant from third cumulants analysis (confusing, isn’t it?).  If the 

third cumulant analysis does not well represent the data, it is time for something more 

sophisticated (see below). 

y 

t 0 
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Cumulants were introduced by Koppel, who showed that 
_

 was proportional to the z-average 

of the diffusion coefficient: 


_

 = q
2
Dz   <28> 

where  

Dz = 
2

2

ii

iii

Mn

DMn


   <29> 

I will leave it to you as an exercise to figure out which average of hydrodynamic radius is 

obtained! Note:  it is not the simple z-average as is often claimed in the literature by people who 

don’t know better. People write Koppel’s expression differently; I write it like this: 

ln(g
(1)

(t)) = -
_

t + 
!2

1
2t

2
 + .....  <30> 

(As of this writing—March 2012—a Wikipedia article has an error in its cumulants expression). 

The term 2 is called the second cumulant. For a perfect single exponential decay, it would be 

near zero. Like the first cumulant, the value one obtains for the second cumulant of 

nonexponential recoveries varies a little bit with which order of fit you are using.  (One of the 

disappointments of cumulants fitting is how sensitive the second cumulant can be for weird 

decays). A measure of the polydispersity of the distribution can be given in terms of the unitless 

quotient 2/
_

2
.  DLS people sometimes call this the polydispersity parameter or “normalized 

variance.” In most of our programs, it is called POLYD 

 

POLYD = 2/
_

2  
<31> 

 

POLYD is hard to measure well, involving as it does a ratio of two quantities that themselves 

depend a bit on the order of fit. As a rule of thumb, if POLYD > 0.3 it is time to consider another 

approach. Cumulants analysis should be reserved for data screening (e.g., the program ALVAN) 

and for nearly single exponential decays.   

 

We have been doing cumulants analysis for a very long time, but we still continue to learn. The 

arrival of the ALV correlator, with its very wide ranges of lag times t, has obliged us to be more 

careful about how data are weighted for noise while doing cumulants. Also, with any cumulants 

package, it is essential to delete some channels near the tail: some of these will go negative when 

the baseline is subtracted, and log(negative) operations are not well liked by computers.  For this 

reason, some people choose to fit a baseline, which converts the cumulants approach into a 

nonlinear problem. Plusses and minuses to that—surely, the baseline will be well fit, but other 

artifacts of fitting may pop up.  

 

Nonlinear Fitting:  In cumulants analysis, the parameters of interest (2, 
_

) appear as linear 

coefficients of the independent parameter, t, in eq. <30>. Cumulants fitting is like a small 

perturbation applied after a huge linearization operation.  More generally, we might try to fit G
(2)
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or g
(1)

 directly.  If g
(1)

 = 
 t

i
ieA  then we could look for Ai and i by trial and error.  The 

Marquardt algorithm (see Bevington) makes this process as rational as possible.  In this 

algorithm, one makes initial guesses at the A’s and ’s.  The program looks in a semi-intelligent 

fashion for better parameters--i.e., ones that reduce (but perhaps do not really minimize) the 

difference between fitted and actual data.  The parameter 
2
 is monitored to assess the progress: 

 


2
 = 2

,1
)(

1
ifit

N

ii yyw 


  <32> 

 

The function yfit is a multiple exponential whose amplitudes and decay rates are adjusted.  It is 

evaluated at precisely the same ti where the experimental data were evaluated.  The symbol  

represents the number of degrees of freedom, approximately the same as the number of data 

points, N.  The statistical weight wi is the inverse, squared uncertainty of each data point:           

wi = i
-2

.  The meaning of 
2
 is this:  when it is unity, the errors of fitting are comparable to the 

uncertainty in the measured data.  The data have been fit to within their reliability, using the 

model function yfit.  The simplest trial function yfit to produce this desired result is preferred.   

 

 Be careful interpreting 
2
!  A lot of students think that high 

2
 means something is wrong 

with the data.  This is one possibility, but not the only one!  The 
2 

parameter is the result of data 

quality, data noise and the adequacy of the fitting function.  Suppose you have a genuinely 

nonexponential decay, but are fitting with just a single exponential term.  Then, a high 
2 

value 

doesn’t necessarily mean anything is wrong with the data.  It may mean you are just using the 

wrong fitting function. In that case, better data (lower ) will increase 
2
.  If 

2
=1 the data are fit 

by the model to within the noise. A legitimate use of 
2 

is when comparing multiple runs of 

similar quality.  If a particular run has a 
2
 much higher than the others, then that run may be 

defective.  If all the multiple runs have similar 
2
 values, but these values are high, it possibly 

means that a better fitting function must be selected.   

 

 One should never forget that nonlinear fitting is prone to give false minima.  There is 

actually a hyperspace where 
2 

could be plotted against many parameters (for example, two A’s 

and two ’s in a two-exponential fit).  There is some particular combination of A’s and ’s that 

really produce a minimum 
2
---but there could be lots of local minima.  To avoid getting stuck in 

a local minimum, the initial guesses are varied and one sees if the Marquardt algorithm will 

steadfastly return the same “best” values.  If it does, then it is assumed that these fitted 

parameters really do describe the data.  This is quite a different situation than linear fitting, 

where the best parameters of fit are determined analytically!   

 

 The raw dataG
(2)

 may have lots of decaying exponential terms, in general.  For example, 

if g
(1)

 has two terms (g
(1)

 = t
eA 1

1
  + t

eA 2
2

 ) then the active part of G
(2)

 (which is just g
(1)


2
) must 

contain three exponentially decaying terms.  They have amplitudes A1
2
, 2A1A2 and A2

2
 with decay 

rates, respectively, of 2,  +  and 2.  However, the three decay rates are not independent.  

If g
(1)

 contains just two exponentials, and you fit G
(2)

 to three exponentials, then the decay rates 

of those three exponentials should be tied together.  Sometimes, they will not be:  this either 
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indicates that g
(1)

 does not contain just two exponentials, or that some error in measurement has 

occurred.  A good test for two exponentials (and no more) is to fit g
(1)

 to two exponentials and 

G
(2)

 to three exponentials.  A consistent set of 1 and 2 should result.   

 

 

Laplace Inversions:  

 In many cases, a near-continuum of scatterers is present.  For example, in a 

polycondensate with Mw = 200,000, the individual species may differ in molecular weight by, 

say, 100.  Instead of writing g
(1)

(t) = 
 t

i
ieA  we can write, to a good approximation,  

g
(1)

(t)  teAd 


 )(

0

  <33> 

The big question is:  knowing g
(1)

(t), can we obtain A(The two functions are Laplace 

transform pairs, and the process of inverting g
(1)

(t) to get A() is called Laplace transformation.  

The idea is similar to Fourier transformation in that functions in reciprocal variables are 

involved, but the actual process is not like Fourier transformation because uniquely best answers 

are very difficult to obtain.  Fourier transforms are easily computed using the famous Fast 

Fourier Transform algorithm. (In a modern programming language like LabView, just wire your 

signal to the FT icon—voila!) Provided that sampling theorem considerations were respected 

when the measured data were taken, the FFT is not very sensitive to noise and consistent results 

are obtained.  The Laplace transform process fares worse:  noise, even a very small amount of 

noise, really leads to problems.  Also, unlike Fourier transformations, no single, universally-

accepted, fast, efficient algorithm exists for Laplace inversion.  Indeed, there are still a few DLS 

researchers who think Laplace inversion is a black art and even statistically unsound!  This view 

is probably extreme, but Laplace inversions really should be scrutinized and double-checked.   

Despite the frequent existence of multiple exponential decays in a variety of natural and 

measurement processes, it was not until the late 1970’s that the situation was understood. The 

paper by Ostrowski et al. contains a nice discussion of the original work of McWhirter and Pike.  

The essential discovery of these workers can be summarized: 

 

If the data in t-space (the correlation function we can measure) contain any noise, then the 

information available in  space (i.e., the function A() that we desire) is limited to low 

resolution: fine details of A() will be extremely difficult to obtain.   

 

Remember, A() is really c(M) because A converts to c and converts to M, with a series of 

approximations.  The implication is that, if the true distribution looks like this: 

 

 Our home-brew multi-exponential, nonlinear fitting software is called MARLIN (for 

the ALV, MARLINA). Nevermind why.  It’s a slight adaptation of the routine CURFIT found 

in Bevington.  Since it only fits sums of exponentials, one must specify a baseline if one 

wishes to fit g
(1)

.  The program easily handles fitting G
(2)

 but, except possibly in the case of a 

bimodal sample, the decay rates from G
(2)

 are difficult to interpret. We have not been using 

these routines lately, as the ones supplied by ALV itself seem good. These routines, or 

variants of them, are used in the FPR apparatus.  
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we might be very lucky to measure something instead like this: 

 

 

 

 

 

 

 

 

 

If you think in Fourier series terms, the sharp little “blip” in the high-M side of the true 

distribution requires some high frequency components.  In this context, frequency means that lots 

of M values would have to be included in our sampling of the distribution:  we would have to 

know the difference between c(M) and c(M+M) where M is small.  Although the basis set of 

Laplace inversion is not simple sine or cosine terms, the frequency analogy is still apt:  the high-

frequency terms required to correctly describe the “blip” are simply not available if g
(1)

(t) is 

“noisy”---and it doesn’t have to be that noisy!   

Pike and McWhirter liken the information retrieval process to image formation by a lens.  

Bob Detenbeck (U. Vermont) makes a wonderful analogy to audio reproduction.  Trying to 

determine A() from g
(1)

(t) is like trying to decide the type of violin being played by a gifted 

soloist from an AM radio broadcast:  the high-harmonic overtones that you require to distinguish 

one violin from another are simply not present at any level above the noise (static) of the 

broadcast.  The reason is that AM radio has a severely limited bandwidth:  frequencies above, 

say, 5000 Hz are not reproduced.  However, noise is present--including some components above 

5000 Hz.  The correlation function is like a bad radio or amplifier:  it just cannot transmit the 

high-frequency components with any significant amplitude.  They get buried in the noise.  If you 

try to guess the high-frequency components (i.e., finer details of the distribution) you will often 

get the wrong answer--because your “guessing” is based on the noise as much as the real signal.  

Similarly, if you try to guess whether Yitzakh Perlman is playing his Stradivarius or some other 

violin, while listening to an AM radio broadcast, you are likely to get the wrong answer.  You 

may be able to discern that a violin, and not a viola, is being played.  In DLS/Laplace transform, 

you will be able to tell that molecules are “big” or  “little.”  Perhaps more sometimes.  Don’t 

expect much and you won’t be disappointed.   

M 

c 

M 

c 
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In Fourier analysis, one obtains the amplitudes of sine or cosine functions that, added 

together, give the waveform of interest.  The sine functions have frequencies like  etc.--

-i.e., the frequency of the functions to be superposed linearly increases...but it is discrete.  The 

essential bit of information for the Pike-McWhirter analysis of the Laplace inversion operation is 

that there is just no point seeking such detailed information.  It is still possible to represent the 

distribution using a discrete set of (exponential) functions.  But the decay rates of the exponential 

functions whose amplitudes we seek should be spaced farther apart.  Instead of looking for A(), 

A(2), A(3), we should space the decay rates evenly in a logarithmic space.  This can be 

expressed:   

 

i+1 = ie
max   <34> 

or, equivalently:   

 

ln i+1 = ln i + /max  <35> 

 

The parameter max is set empirically according to the noise level:  for less noise, use a higher 

max so that the distance, in log space, decreases.  This corresponds to more resolution.  For 

noisier data, do not attempt such resolutions.  Decrease max so that the distance between 

functions (they are called “grid points” as you will see below) increases.   

The suggestion of McWhirter-Pike is to sample the true distribution, using a discrete number 

of grid points (exponentially decaying functions) whose decay rates are exponentially related.  

They called this exponential sampling.  Suppose the true distribution looks like this: 
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





How would you sample this function?  First, you would have to define the minimum and 

maximum ranges over which to seek solutions.  Call these GAMMIN and GAMMAX; they set 

the RANGE of the inversion process.  Next, you would select max and select some “grid points” 

that fall in-between GAMMAX and GAMMIN.  The number will usually be something like five.  



























The vertical arrows show the evenly spaced grid points.  The next step is to determine how 

long the arrows should be, according to the only information we have about the true distribution, 

which comes in the form of the imperfectly measured correlation function.  This is done by 

taking the function 
 t

i
ieA where the ’s are now specified by Eq. 27 and fitting it to the data 

by finding the best A’s.  Since the decay rates are fixed, this is a linear fitting problem.  There 

would be no point trying to float five decay rates and five amplitudes; that should just about fit 

any decaying function and might violate the McWhirter-Pike guideline, since floating decay rates 

could float very close to each other.   

One thing may bother you.  Five little grid points do not look very much like a continuous 

distribution.  There are two solutions to this.  The first is to use an interpolation formula (see 

Ostrowski paper).  The second is to shift the grid points.  In practice, we use the latter option.  

The whole set of grid points is shifted by a distance max (there is nothing magical about the 

number 5).  The new grid is shown below, and the lengths of the original grid point arrows have 

been extended according to the best fit obtained.  Note that the arrow lengths do not exactly 

match the true distribution--that’s the result of noise.  But remember, in practice, you do not 

know the true distribution!   

 

ln  

A 

ln  

A 

GAMMIN 
max 
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Now the process is repeated.  The new grid point arrows are lengthened, according to the best fit 

for that grid.  Then there occurs another shift by max, another linear best fit, etc.  Eventually, 

the true distribution is approximated.   

But how do you select max and thereby control the number of grid points?  And, for that 

matter, how do you set GAMMAX and GAMMIN?  The answer is to set GAMMAX and 

GAMMIN very liberally at first---include decay rates that are too fast and too slow.  Set max to 

some low value, like 3.  Try to fit the data.  Probably, the best fit will contain some negative 

amplitudes.  This is physically unrealistic!  Molecules cannot have negative molecular weights or 

concentrations, so we enforce a nonnegativity constraint.  To do so, delete those grid points from 

the fit and repeat (some exponential sampling algorithms do a bit better and re-arrange the grid).  

In this way, the physically meaningful RANGE will be identified.  Then try to add as many grid 

points as possible by raising max.  If max is too high, your fit will again respond to the noise, not 

the real g
(1)

 signal, and you will have to back off and/or decrease your range.   

If this process sounds laborious, it is!  We may still use it, however, to “scope out” an 

inversion in preparation for automated Laplace inversion routines.  The most important of these 

is the Fortran program CONTIN, written by S. Provencher, an American emigre’ to Germany.  

Provencher’s program is a standard for the DLS crowd, and it is used elsewhere too (e.g., 

fluorescence and DOSY NMR communities).  It does not rely on sequential stepping as does 

exponential sampling and, therefore, is capable of returning narrower distributions.  Actually, 

CONTIN generates up to 12 different answers and then automatically chooses the one it thinks is 

best.  To CONTIN, “best” means the least detailed distribution that is consistent with the data.  It 

makes this choice based on statistical estimates (pretty vague statement, eh?).  Some more 

detailed distributions will be obtained and some less detailed ones too.  The user should always 

inspect all of them.  Our software makes this easy to do.  CONTIN competitors include 

exponential sampling (but there is no standard, and everyone writes their own program; ours is 

quite good).  Other CONTIN competitors are based on the Maximum Entropy approach; these 

have received mixed reviews.   

Another thing should be mentioned.  As usually used, CONTIN and also our own version of 

exponential sampling, called EXSAMP, do not just minimize 
2
.  Rather, they minimize a 

modified 
2
 where a term has been added to penalize fits where adjacent grid points produce 

dramatically different A values.  Thus, unrealistically sharp variations in amplitudes are reduced.  

This is called enforcing parsimony.  This is discussed in two articles from our lab, and in many 

other places.  

max ln  

A 

GAMMIN 
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As already mentioned, Laplace inversion has its detractors.  Most people who look at the 

problem are amazed that Laplace inversion cannot be done with excellent resolution.  For 

example, 32 grid points is a commonly used CONTIN configuration.  The number of data points 

collected is usually much more---perhaps 272.  To the uninitiated, it may seem that 32 

parameters might be fitted to 272 points without so much trouble.  Well, it ain’t so.  On the other 

side of the spectrum are experienced dynamic light scatterers who think that CONTIN, 

exponential sampling, etc. are all too much detail, and that one should stop with cumulants, 

double or perhaps triple exponentials, or stretched exponentials (we haven’t discussed this 

option).  These people claim those 32 functions give way too many adjustable parameters, that it 

defies logic and statistics to use so many, etc.  I think that position is extreme, too.  CONTIN and 

exponential sampling algorithms attempt to take advantage of the solid theoretical work of 

McWhirter-Pike, which defines about how much you can expect (i.e., not much!).  The programs 

attempt to construct a logical, repeatable method to take advantage of what is available.  With 

parsimony, these functions do not really overfit the data as badly as it may seem; the amplitudes 

are tied together because the objective is to minimize the modified 
2
.  As sometimes happen, the 

intermediate position is best:  use Laplace inversion programs, but use them with great caution 

and respect for the fact that resolution is inherently poor.   

 

Some guidelines (from experience) 

 Exponential decays cannot be resolved unless the two decay rates differ by more than a factor 

of about 2. 

 Low-amplitude peaks are especially suspect. 

 Always confirm by applying two inversion routines.   

 Always apply multiple exponential fits in addition to Laplace inversion. 

 Don’t feed these programs bad data! 

 Always investigate the effects of modest baseline changes on the distribution. 
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Appendix 2: Extracting Molecular Information from the Decay Rate Distribution 
 

This section under development—at the moment, a drop point for resources from PowerPoints etc.  
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Appendix 3. Description of Available Software 

 

This section under development.  

 

ALVAN Suite 

Laplace Suite: Laplace & Pltagam 

ANSCAN (for FPR, but….) 

2EXP simulate Excel 

2EXP real data Excel 
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Appendix 4. Functions and Settings on the LFI-1096 Correlator 

 

 

We discuss the LFI-1096 because it’s simpler than the more modern ALV correlator or the 

correlator.com multicorrelator, which work by actually performing multiplications (I think) while 

the LFI1096 and similar BI9000AT perform multiple additions using an add command generator 

and shift register.  Many of the same principles will apply to all instruments, so reading this 

section is important even if you won’t use the LFI-1096 (you’d have to find it first!).  The LFI-

1096 is a linear correlator (it has some weird modes, too, but we ignore these for now).  As 

already discussed, its function is to approximate the integral:   

 

 G
(2)

(t) = <I(0)I(t)> = lim
T T

T

T
I t I t t dt

 

 
1

2
( ' ) ( ' ) '  <9> 

 

First, you must understand that the LFI is usually used as a digital correlator:  it detects and counts 

discrete photon events.  You connect the output of the photomultiplier tube (PMT) first to a 

preamplifier/discriminator (PAD), and then to the correlator: 

 

 

 

 

 

 

 

 

 

 

Figure 3 

 

So, Figure 1, showing a continuous variation of intensity, fails to represent the true situation.  If we 

divide the time axis into discrete packets, all separated by a time interval  then we really 

measure a pulse train coming out of the PAD.   

 

 

 

 

 

 

 

PMT 

PAD Correlator 

Ratemeter 

 

n1=1 n3=2 n2=0 n4=0 n6=1 n5=0 n7=0  n8=2 

This section is mainly of historical interest, but it may help students nail down what an 

autocorrelation function is and how it could be measured….ooops, estimated! 



http://macro.lsu.edu/howto     DLS_Minicourse.doc   Paul Russo  February 2012 

45 Copyright Paul Russo 2012 

 

When building the average correlation function at lag time i, products of the photocount samples of 

all times separated by i are generated.  The natural way to do this would seem to be to collect 

data for awhile, store it in a big array and then use a software algorithm to create the correlation 

function.  This is called “batch processing” and no good correlator actually works this way (it is 

too inefficient; too much time devoted to computing and not enough to measuring).  Instead, real 

time correlators are used, in which the data stream is pipelined down a shift register.  The shift 

register contents move one channel to the right with each clock cycle, he contents of each 

shift register element can be added to memory every time a new pulse comes into a direct channel 

(the direct channel  represents the “present time”).  In the figure below, we have added the direct 

channel and memory to the time diagram already shown, which now represents the shift register.    

 

 

 

 

 

 

 

 

 

 

 

 

 
Also shown in the figure is the add command generator (the circle with the + sign in it).  

Whenever a pulse is detected in the direct channel, the each element in the shift register is added 

to the appropriate channel.  For example, a pulse detected in the direct channel will cause the 

number “two” to be added to the memory associated with channels and 8.  The memories of 

channels 1 and 6 would be increased by one.  All the other channels do not change.  If another 

pulse comes into the direct channel, the memories are again increased.  Each time a new pulse 

arrives in the direct channel, the memories are increased.  You can see this corresponds to 

multiplication of pulse counts, separated by times.  For example, suppose 3 pulses arrive in the 

direct channel during some time period of duration .  The memory contents of channel 3 would 

be incremented by 32 = 6.  This would be done by three separate additions.  After a time  has 

expired, the data are clocked down the shift register, which now looks like this:   

 

 

 

 

 

Now, with each new pulse in the direct channel, these data will be added to their respective 

memories.  Thus, the products in the correlation function <I(0)I(t)> are built by successive 

l photons 

 

n1=1 n3=2 n2=0 n4=0 n6=1 n5=0 n7=0  n8=2 

direct Shift Register 
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produce pulses (PMT’s are not that efficient), because some pulses are false (arising from within 

the PMT and not having to do with light).  For a detailed account of the approximations made in 

assembing a digital photocount correlation function in this way, see the textbook by Chu.  A few 

points are all we need to stress. 

 

 It is clear that the ability of the direct channel to detect a rapid stream of pulses and the ability 

of the adders to add them to memory must be very high. 

 The “shift” operation of the register must be fast and free of losses.   

 Ideally, the shift register should hold very large numbers, but in practice it is limited.  For 

example, the LFI-1096 uses a 4-bit shift register:  numbers in each element can range from 0 

to 15.  Thus, if 

less than 15/0.1 s = 150 Hz. 

 Since some photomultiplier tubes produce dark count rates this high, “prescaling” may be 

required:  only count every other pulse, every fourth pulse, every eighth pulse, etc.   

 The total “time window” is the number of channels times 

to handle five decades of time would require 100,000 channels---i.e., prohibitively expensive. 

 You must be sure to set  to capture the decaying process, and hope that you can capture all 

decaying processes in the available number of channels (which is 272 on the LFI-1096).   

 

 

 

These guidelines make for decent correlation functions with the 1096 or similar correlators. 

 

 Set the decay time first!  Try to make sure you can capture all the processes.  If the baseline is 

not laying down flat, use a different correlator (e.g., the ALV). 

 Try to keep the photocount rate to about 1/.  If the count rate greatly exceeds 1/

natural fluctuations in the intensity will ensure that the count during some sample times will 

exceed 15--i.e., you will overflow the shift register.  This can cause great problems with 

analysis, so avoid it!  If the coherence factor f is small, you can exceed this rate somewhat 

because the fluctuations in intensity will be small then.   

 We usually keep the average count rate under about 400,000/s, even if this is not yet 1/ 

  

  There are quite a few other tips to LFI-1096 operation, but these are best learned with 

practice.  In the bad old days, you had to learn all the tricks, since linear correlators were 

commonly pushed beyond their limits.  Now you would only use a linear correlator for fairly 

easy measurements.  Log-time correlators such as the ALV-5000 are now used for almost any 

difficult case.  It is beyond the scope of this document to explain the mighty ALV (and its 

main competitor, the Brookhaven BI-9000).  However, a little information is provided, just 

so you can see that the limitations of the linear correlator can be dealt with--using radically 

different design. 

 

 Log-time correlators were suggested by the theoretical work of McWhirter and Pike, 

which will be discussed in greater detail later.  These authors demonstrated that there was no 

advantage to having lots of linear spaced points if one wants to measure exponential decays (or 

multi-exponential decays, as in polydisperse samples).  A correlator that would work well could 
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be constructed with just a few channels, whose lag times were exponentially spaced:  ti = 2ti-1.  

Alternately, you could use the same number of channels as a typical linear correlator (e.g., 256 or 

272) and cover much greater time windows.  About this same time, a number of workers 

discovered that wide time windows were really necessary to capture all the physics of many 

important processes (not usually in dilute solutions, however).   

 

 There were several attempts to stretch out the time window.  The LFI-1096 has an 

optional mode, called multi-tau, that divides system resources up so that three correlation 

functions can be measured simultaneously.  The first uses a “base time” 

channel; the second uses an extended time m and the 

third uses m
2
he width of the shift registers expands so that, if the intensity is set so that 

overflows do not occur in the first correlation function, they also do not occur in the other two, 

even though the effective  is there very long.  Operating in this mode, the window of the LFI-

1096 is 0 - 8192.  Thus, almost four decades of time can be spanned.  Not bad, but not ALV 

either!  Another patched-up attempt to extend the time window was made by Malvern, who made 

a correlator that looks kind of like this:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that memory only exists for some shift register locations.  Thus, the data were delayed large 

amounts to generate the log-time spacing, but lots of data are being “wasted” in the shift 

registers.  The performance features of the Brookhaven BI-9000 suggest that it may operate this 

way, too--but I do not know for sure.  There is not time to discuss “the ultimate solution” which 

is the ALV-5000, developed by the late Klaus Schätzl, and discussed in the Wyn Brown book on 

dynamic light scattering.  The ALV-5000 has a completely different architecture, using (I think) 

multiple 8-bit processors and the CPU on a host IBM-PC computer to actually multiply the 

lagged intensities together very rapidly instead of add them repeatedly.  Data are stored in 

memories, and precision varies from 8-bit to 16-bit, depending on the lag time.  There are a 

 

n1=1 n3=2 n2=0 n4=0 n6=1 n5=0 n7=0  n8=2 

direct Shift Register 
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number of other “tricks” to making the data come out very accurate, but the main point of the 

ALV is the same as other new correlators:  it achieves very wide sample times with little 

hardware.  Also, you don’t have to “aim” the available channels at the actively decaying part of 

the correlation function.  If it moves, the ALV will likely capture it.  There is no decay time 

increment to set.   

 


