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Sedimentation

Introduction


Sedimentation is one of the great classical methods for polymer characterization.  There are two varieties, equilibrium and velocity.  They are usually done on the same instrument, an analytical ultracentrifuge.  This device can determine the concentration of a polymeric solute as a function of position from the center of a rapidly rotating cell.  


In equilibrium sedimentation, the particle is not actually sent all the way to the bottom of the cell, resulting in a “sediment.”  Rather, a “low” centrifugal field is used to create a concentration gradient--more particles near the bottom of the cell than near the top.  The gradient is opposed by diffusion, and dynamic equilibrium is slowly achieved.  Just as chemical potential measurements (e.g., membrane osmometry) yield valuable information like molecular weight, so do measurements in a combined centrifugal and chemical potential field.  Whereas a membrane osmometer uses a physical barrier to create a sharp concentration boundary, and whereas light scattering responds to smaller, spontaneous osmotic potentials, equilibrium analytical ultracentrifugation uses gravitational potential to create a smooth but large concentration gradient.  The point is, all these methods produce absolute molecular weight information because they take advantage of the chemical potential.  Osmometry is the most limited in molecular weight range.  Equilibrium analytical ultracentrifugation and light scattering can be applied to practically any macromolecule, and the former technique can even be used for very small molecules (like sugar).  Equilibrium analytical ultracentrifugation is extremely powerful for aggregating or associating systems.  The disadvantage to equilibrium analytical ultracentrifugation is profound slowness.  This problem is ameliorated to some extent in new machines that measure many samples simultaneously.  The method will never have the throughput of GPC/LS, but thanks to the excellent design of the new instrument, comparatively little time is spent fiddling around.  


Velocity sedimentation is a transport technique, akin to diffusion or viscosity.  The rate at which a particle sinks is measured.  And it really does sink--all the way to the bottom if you let it--because the field is much higher than in the equilibrium method.  Velocity sedimentation does not produce absolute molecular weights, except by combination with a second transport method.  It measures friction and is therefore useful for shape information.  Some of us have research interests in the friction itself and do not care much about molecular properties (ahem!).  

	Method
	Applications
	Angular Velocity
	Time to measure

	Equilibrium
	Absolute M
	Relatively low
	Several days

	
	Aggregation
	
	

	
	
	
	

	
	
	
	

	Velocity
	Sedimentation Coefficient
	Relatively high
	Several hours

	
	M via Sedimentation & Diffusion
	
	

	
	Mutual friction
	
	

	
	
	
	

	
	
	
	

	
	
	
	


Background


These methods, once essential for biochemistry, almost disappeared!  Modern biochemists have a raft of simpler, cheaper and adequate-if-boring methods for the rather qualitative information they usually require.  Most important are gel electrophoresis and gel filtration.  The classic analytical ultracentrifugation instrument was the Beckman Model E.  A triumph of technology and a tribute to the lengths that people will go to for science, the Model E was nonetheless tedious to operate.  Hardly anyone would actually try to build their own instrument--it requires serious technology.  A few devotees lovingly maintained and even modified their treasured Model E’s.  In this way, the old technique was kept alive while newer methods prospered.  


All the new methods fail at a certain, very important task:  characterizing molecular weights and associations at very low concentrations.  This is important in the pharmaceutical industry, and perhaps that explains the resurgence of the method.  Another factor is that computers can remove the tedium of data analysis.  Anyway, a new Beckman analytical ultracentrifuge (AUC) finally appeared, the XLA.  There are two kinds of concentration detectors for XLA’s:  UV-Vis absorption and interference.  Our XLA has only the first of these:  the absorption (at practically any wavelength you desire) can be measured as a function of position from the cell, as the instrument is running.  Since concentration is related to absorbance (Beer’s Law) one can essentially measure c(r) vs. r.  This can be done with a precision of about 5 microns, and the absorption data are of excellent quality.  The machine runs at extremely stable speeds, with good temperature control.  Two things our machine cannot do:  work in a solvent that absorbs more strongly than the polymer dispersed in it; and, work with solutes that do not absorb.  Even these cases can be handled on XLA’s equipped with interference optics.  

Sedimentation Velocity

A mechanical picture of sedimentation suffices to explain most aspects of the velocity experiment.  In the absence of an applied field, a polymer in solution will just rattle around.  If a field (say, a centripetal field caused by spinning the sample at an angular frequency, ) is applied, the molecule quickly accelerates and very soon reaches its terminal velocity.  The situation in the sector-shaped analytical ultracentrifuge cell looks like this:
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Attainment of terminal velocity signifies a balance of forces (a molecule feeling a net force would accelerate).  The balance between centripetal, drag and buoyant forces is expressed:

Ftotal = Fd + Fb + Fc = 0  

Eq. 1

Fc 
= centripetal force = 2rm 



Eq. 2
where m is the particle mass and -2r represents the centripetal acceleration.  

Fd 
= viscous drag force = -f(v 



Eq. 3

where f is the translational friction coefficient and v the linear velocity

Fb 
= buoyancy force = -2rmo  



Eq. 4

where mo is the mass of solvent displaced by the particle

Thus, 

2r(m-mo) - f(v = 0

Eq. 5

What is mo ?  We could take it as the volume displaced times the solution density (it’s not obvious yet why it should be the solution density—that comes from thermodynamics, as we will see below).  The displaced volume could be taken as the product of the mass and the partial specific volume:  
[image: image25.wmf].  The force balance equation becomes:  

2rm(1-
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Eq. 6
The particle mass is the molar mass divided by Avogadro’s number, m = M/Na, and we define the sedimentation coefficient, S, to be the velocity obtained divided by the angular acceleration applied:  
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Eq. 7
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Things to note:

· This development applies to dilute solutions.  We can indicate this by writing a superscript on the S – e.g., So – to indicate extrapolation to infinite dilution.  

· If 
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 then sedimentation will not occur and no experiments can be done
· If you knew f and 
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 independently, then you could get M from S.  This knowledge is available from diffusion (e.g., dynamic light scattering).  Combining transport methods is often beneficial, their high precision compensating partially for the absence of absolute molecular weight information from any single transport method.  

· S has units of s/radian2.  One doesn’t usually worry about the radian2
· 1 ( 10-13 s is called a Svedberg, and given the symbol S

· Many biological components are identified by their sedimentation coefficients.  Example:  4S RNA has S = 4 ( 10-13.  

· Theodor Svedberg (1884-1971) won the Nobel Prize in Chemistry in 1926; he deserved the award just for surviving the dangerous early instruments.  

· S measurements are often quoted as if they were made at 20oC in water, even if they were not.  The correction recognizes that f is proportional to viscosity, and the 
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 term also has to be adjusted.  

[image: image7.wmf]solvent

T

water

v

v

S

S

solvent

T

water

water

solvent

T

o

solvent

T

o

water

,

,

20

2

,

2

,

20

,

20

,

,

,

20

~

1

~

1

r

r

h

h

-

-

=


Eq. 8

Measuring S

The first thing to emphasize is that, like any transport measurement, you should extrapolate S to infinite dilution in order to obtain molecularly meaningful parameters.  The Beckman XLA uses extremely sensitive absorption optics, so in practice it may be possible to measure at one really low concentration—so close to c=0 that you don’t worry about the extrapolation.  Older machines using Schlieren detection systems did not afford this luxury.  That’s why you see so much emphasis on concentration dependence in the old literature.  Modern reasons for studying the concentration dependence include better understanding of semidilute behavior, but that’s another story.  


An experimental data set (Figure 2) consists of radial scans (Absorbance vs. radius) acquired at several times during the sedimentation.  One hopes that the sample is not sedimenting much during the relatively short time required to scan the radius.  
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Figure 2.  Typical data set for sedimentation velocity.

The XLA is a dual-beam instrument; incredibly, it can distinguish absorbance from the reference half of its dual cell and the sample half, even though both are within 1 cm of each other and spinning at up to 60,000 RPM.  The sharp, strong spikes (around 6 cm) are due to the menisci of reference and sample compartments.  

Other noteworthy features

· Although absorbance is plotted, Beer’s law says these curves really represent concentration profiles.  The constants of proportionality between absorbance and concentration are not important.  

· The “boundary” is very broad in this case (a small biopolymer, M ( 20,000).  This broadening is caused by diffusion.

· Diffusion is your enemy in sedimentation velocity; it complicates the identification of the “boundary”.  There is nothing you can do about it, though.  

· The “boundary” moves towards higher and higher radii with time.

· A “pellet” is forming on the bottom (the sudden upturn at high r).  

· The “plateau value” concentration decreases with time (because the cell is fatter at the bottom than it is at the top, so as to fight convection; this dilution effect is called radial dilution)

Analyzing the data

The key equation is:  
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Eq. 9
The first half of this expression just follows from the definition of S.  In the second half, we define the velocity as the rate at which the “boundary” sinks.  We define rb as the radius value where the “boundary” is located at any one point in time.  This differential expression has the solution:  
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Eq. 10
A plot of ln(rb) vs. t gives you the sedimentation coefficient, S.  

Step 1.  Identify the boundaries.  There is a right way to do this, but it is adequate for our purposes to just define the boundary as the point of inflection in the curves above.  This will be the point of maximum slope, so you can use Origin (or similar) to find the derivative.  You may wish to smooth the data first.  Figure 3 shows a plot for one of the profiles in Figure 2.  
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Figure 3.  Smoothed absorbance vs. r data and derivative.  

Step 2.  Repeat for all the profiles.

Step 3.  Plot ln(rb) vs. t and get the sedimentation coefficient from the slope.  

That’s it!  Simple.  

Extra Stuff:  Combining Sedimentation & Diffusion


Since Do = kT/f = RT/Naf is easily measured by dynamic light scattering, we can obtain the friction factor, f.  Then Eq. 7 can be used to solve for M, assuming that 
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 is known (it’s often 0.73 mL/g for proteins).  Alternately, we could just rewrite Eq. 7 to show that its denominator is proporational to D and then rearrange to solve for M.  
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Eq. 11

In principle, Sedimentation-Diffusion is a very fast, accurate way to obtain M.  It should probably be used more than it is.  Unfortunately, this method is ineffective for polydisperse samples.  Also, DLS is not as sensitive to small particles as the XLA is, so higher concentrations are required and an extrapolation is usually needed.  Still, several concentrations could be measured by DLS in an hour or so (i.e., while the analytical ultracentrifuge is running).  This is preferable to trying to obtain D directly from the concentration profiles (which is theoretically possible, but far less accurate and reliable than DLS, especially for large, slow diffusers).  

Sedimentation Equilibrium


There were some problems in the above treatment.  How do we really identify rb?  Why should we use solution density, instead of solvent?  These problems stem from our single particle, mechanical viewpoint.  In fact, there are many particles in a thermodynamically large system.  The solution is to use a theory that connects flow of the molecules (including sedimentation and diffusion from the outset) with a gradient of an appropriate potential that includes both the effects of concentration and the effects of the centrifugal field.  Define this total potential as:


[image: image14.wmf]c

U

+

=

2

~

m

m



Eq. 12

where  has its usual meaning (chemical potential of solute) and Uc is the centripetal potential.  The flux of particles through a unit area defined in the sample is developed by multiplying the gradient in the total potential, 
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, by some generalized mobility, L.  In computing the total potential gradient, the chemical potential is treated as a function of T, p and c.  The pressure term matters, since pressure varies with position in the rotor; the actual solution density should be used in computing it (aha!).  Skipping a few, not-too-difficult manipulations, one obtains:  
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Eq. 13

The mobility coefficient is c/Naf and so we can write:
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Eq. 14
where S and D are properly defined through the second half of the expression in terms of flux.  Eq. 14 is just provided for comparison with the mechanical picture.  Eq. 13 really makes a better start for the equilibrium experiment.  At equilibrium, J = 0 and Eq. 13 becomes:  
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Eq. 15
This has the solution:  
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Eq. 16
Where a is an integration constant, usually taken as the meniscus position or similar.  The equation basically indicates exponential growth in concentration as you move down the cell.  Figure 4 illustrates the growth.
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Figure 4.  Equilibrium analytical ultracentrifugation data.

Since and 
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 are all known, one can easily determine M.  The modern way to do this is with a nonlinear least squares fit.  One could first linearize the expression instead:  
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Eq. 17

If multiple species are present, the concentration profile is a sum of exponentials.  Of great importance to biological chemistry is the case where the multiple species represent some definite kind of aggregation:  e.g., 4 proteins associate into a tetramer.  In such cases, analytical ultracentrifugation can be used to obtain the binding constants and the stoichiometry of the association.  It may have no equal for this.  

References

Classic biophysical textbooks like Van Holde or Cantor & Schimmel or Tanford contain good descriptions of the analytical ultracentrifuge.  The XLA manual itself can be consulted.  Associated with that are materials for a minicourse taught by Beckman, which contain lots of useful references, including modern ones.  
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